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STABILITY OF THE EQUILIBRIUM OF A FLAT LAYER

IN A MICROCONVECTION MODEL

UDC 532.517.013.4V. K. Andreev and V. B. Bekezhanova

The stability of the equilibrium state of a flat layer bounded by rigid walls is studied using a microcon-
vection model. The behavior of the complex decrement for long-wave perturbations has an asymptotic
character. Calculations of the full spectral problem were performed for melted silicon. Unlike in the
classical Oberbeck–Boussinesq model, the perturbations in the microconvection model are not mono-
tonic. It is shown that for small Boussinesq parameters, the spectrum of this problem approximates
the spectra of the corresponding problems for a heat-conducting viscous fluid or thermal gravitational
convection when the Rayleigh number is finite.

1. Governing Equations. The Oberbeck–Boussinesq model describes adequately the thermal gravitational
convection under earth’s conditions. However, in very weak force fields, replacement of the continuity equation
by the equation div u = 0 leads to elimination of terms that can be as important as the term −βθg, which
expresses the contribution of the buoyancy force to the momentum equation. Pukhnachev [1] developed a model of
microconvection in which the temperature dependence of density is given by

ρ = ρ1(1 + βθ)−1,

where ρ1 and β are positive constants. As in the classical Oberbeck–Boussinesq model, for small β, we obtain
ρ ≈ ρ1(1− βθ).

Let u(x, y, z, t) = (u1(x, y, z, t), u2(x, y, z, t), u3(x, y, z, t)) be the velocity vector, and p(x, y, z, t) be the fluid
pressure. Following [1], we introduce new unknown variables:

w = u− βχ∇θ; (1.1)

q = ρ−1
1 (p− λ divu)− β(ν − χ)χ∆θ. (1.2)

Here χ is the thermal diffusivity, λ is the second viscosity coefficient, and ν = µ/ρ1 is the kinematic viscosity. After
some transformations [2], we obtain the following system of equations for the functions w, q, and θ:

wt +w · ∇w + βχ rotw ×∇θ + β2χ2 div(∇θ ⊗∇θ − |∇θ|2I)

= (1 + βθ)(−∇q + ν∆w) + g; (1.3)

divw = 0; (1.4)

θt +w · ∇θ + βχ|∇θ|2 = (1 + βθ)χ∆θ. (1.5)

Here g is the acceleration of gravity. The contribution of the dissipative function and pressure forces into the heat
input equation (1.5) is assumed to be negligibly small.

At the initial time, it is necessary to specify the vector w and the temperature θ:

w|t=0 = w1(x) ≡ u1 − βχ∇θ1, divw1 = 0, θ|t=0 = θ1(x). (1.6)
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The following conditions are satisfied on the rigid walls:

w + βχ∇θ = 0; (1.7)

θ = θw(x, t) or k1
∂θ

∂n
+ b(θ − θg) = Q. (1.8)

Equality (1.7) is the attachment condition (u = 0) on the rigid wall; the first equality in (1.8) specifies the wall
temperature and the second equality specifies heat transfer with the ambient medium (for b = 0, the heat flux).

Remark 1. For convection in a closed cavity Ω, from (1.4) and (1.7), we have the equality∫
Γ

∂θ

∂n
dΓ = 0, (1.9)

where Γ is the rigid wall surrounding the fluid. If we assume that ρ = ρ(θ), from the laws of conservation of mass
and energy and from the attachment condition, we have∫

Γ

Vθ
∂θ

∂n
dΓ =

∫
Ω

Vθθ|∇θ|2 dΩ, (1.10)

where V = 1/ρ(θ) is the specific volume. For model (1.3)–(1.5), V = (1 + βθ)/ρ1, and from (1.10), we obtain
equality (1.9). Condition (1.9) [or more general (1.10)] is a necessary condition for the density to be independent
of pressure.

We assume that l∗ and θ∗ are the characteristic length and temperature. We introduce dimensionless variables
by the relations

x↔ l∗x, t↔ l2∗t/χ, w ↔ l−1
∗ χw, θ ↔ θ∗θ, q ↔ qνχl−2

∗ . (1.11)

Then, system (1.3)–(1.5) is written as

wt +w∇w + ε rotw ×∇θ + ε2 div(∇θ ⊗∇θ − |∇θ|2I)

= (1 + εθ)(−∇q̄ + ∆w)Pr − εη(t)Pr θ; (1.12)

divw = 0; (1.13)

θt +w · ∇θ + ε|∇θ|2 = (1 + εθ)∆θ, (1.14)

where Pr = ν/χ is the Prandtl number, ε = βθ∗ is the Boussinesq parameter, and η = l3∗g(t)/(νχ) is a vector
microconvection parameter. In particular, if g = (0, 0,−g), then η = l3∗g/(νχ) is a microconvection parameter.
For η < 1 [1], the Oberbeck–Boussinesq approximation is inadequate for describing convection. Boundary condi-
tion (1.7) becomes

w + ε∇θ = 0. (1.15)

In Eq. (1.12), the analogue of the modified pressure is q̄ = q − l3∗g(t) · x/(νχ).
The parameter ε is included in system (1.12)–(1.15) in a regular manner (usually, its real value does not

exceed 10−2). Therefore, an analysis of Eqs. (1.12)–(1.15) leads to the following conclusions:
1. For moderate Prandtl numbers and ε→ 0, the microconvection system approximates the equations for a

viscous heat-conducting fluid.
2. If Pr � 1, in the limit we obtain the system of “creeping” motion:

∆w −∇q̄ = εη(t)θ, divw = 0, (1.16)

θt +w · ∇θ + ε|∇θ|2 = (1 + εθ)∆θ.

3. If εη(t) → R(t) 6= 0 as ε → 0, we obtain the Oberbeck–Boussinesq model [R(t) is the Rayleigh number
vector]. We note that Pr εη(t) = βθ∗l

3
∗g(t)/χ2 = Gr (Gr is the Grashof number vector).

Series expansion of the solution in ε (or series expansion in Pr−1 in conclusion 2) in a zeroth approximation
yields one of the models indicated above. For the problem (1.3)–(1.7), Pukhnachev [3] proved the existence of an
analytical solution in ε in the Hölder classes. Microconvection was considered in a closed region Ω, and boundary
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condition (1.8) was brought to the form ∂θ/∂n = Q/k1. Because in [3], the characteristic velocities and pressures
are different from those in (1.11), the ultimate problem for ε = 0 cannot be physically interpreted.

Following [3], we can justify conclusions 1 and 2 mathematically. In the present paper, this is done using as
an example a numerical solution of the full spectral problem that arises in studying the stability of fluid equilibrium
in the microconvection model.

2. Equilibrium State. In the equilibrium state, u = 0 and θt = pt = 0. Hence, from (1.1), it follows that

w0 = −βχ∇θ0

(the subscript 0 refers to the equilibrium state), and, according to (1.4), the temperature is a harmonic function:

∆θ0 = 0. (2.1)

Equation (1.5) is an identical equation, and Eq. (1.3) is equivalent to the equation

∇q0 = g/(1 + βθ0). (2.2)

We note that by virtue of relations (1.2) and (2.1), q0 = p0/ρ1. Therefore, the necessary equilibrium condition has
the form g · rot g = 0. It holds for a constant vector of external forces, and it follows from (2.2) that

∇θ0 × g = 0. (2.3)

If g = (0, 0,−g) (g = const > 0), Eq. (2.3) holds only for θ0 = θ0(z). In this case, from (2.1), we have
θ0(z) = c1z + c2 (c1, c2 = const). In particular, the equilibrium state of a layer with rigid walls (|z| = l) on which
constant temperatures θ1 and θ2 are maintained is described by the formulas

w0 = (0, 0, βχ(θ2 − θ1)/(2l)), θ0 = (θ1 − θ2)z/(2l) + (θ1 + θ2)/2,

q0 = − 2lg
β(θ1 − θ2)

ln
(

1 + β
θ1 + θ2

2
+ β

θ1 − θ2

2l
z
)

+ c3, c3 = const.
(2.4)

Here, unlike in the classical case, the analog of pressure [the function q0(z)] is distributed under a logarithmic rather
than linear law. In addition, solution (2.4) satisfies system (1.16).

Remark 2. From (2.4) as β → 0, we obtain

w0 = u0 = 0, θ0 = (θ1 − θ2)z/(2l) + (θ1 + θ2)/2, q0 = c4 − gz, c4 = const. (2.5)

Because the pressure p0 = q0ρ1, system (2.5) corresponds to the equilibrium state of a heat-conducting viscous fluid
layer. This follows from the fact that according to the substitution (1.1) and (1.2), as β → 0, system (1.3)–(1.5)
approximates the Navier–Stokes equations for a heat-conducting viscous fluid.

Remark 3. If in the expression for q0(z) from (2.4) we retain terms of second-order smallness over β
and use p̄0(z) to denote the deviation of pressure from hydrostatic one, we obtain the equilibrium state in the
Oberbeck–Boussinesq model (see [4, 5]):

w0 = u0 = 0, θ0 =
θ1 − θ2

2l
z +

θ1 + θ2

2
,

dp̄0

dz
= ρ1gβθ0(z). (2.6)

3. Linearized Problem of Small Perturbations in the Microconvection Model. Let w(x, t),
q(x, t), and θ(x, t) be the known main motion, w̃(x, t) = w(x, t) + W (x, t), q̃(x, t) = q(x, t) + Q(x, t), and
θ̃(x, t) = θ(x, t) + T (x, t) be perturbed motion. We assume that W , Q, and T and their derivatives are small.
Substituting w̃, q̃, and θ̃ into Eqs. (1.3)–(1.5), we obtain the following linear problem with respect to W , Q,
and T [2]:

Wt +w∇W +W∇w + βχ(rotW ×∇θ + rotw ×∇T )

+ β2χ2[∆θ∇T + ∆T∇θ −∇θ∇(∇T )−∇T∇(∇θ)]

= (1 + βθ)(−∇Q+ ν∆W ) + βT (−∇q + ν∆w); (3.1)

divW = 0; (3.2)

Tt +w · ∇T +W · ∇θ + 2βχ∇θ · ∇T = (1 + βθ)χ∆T + βχT∆θ. (3.3)
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We note that in (3.1), the expression for β2χ2 is equal to div[∇θ⊗∇T +∇T ⊗∇θ− 2I∇θ ·∇T ] because ∇θ∇(∇T )
+∇T∇(∇θ) = ∇(∇θ · ∇T ).

On the rigid walls, the conditions

W + βχ∇T = 0, T = 0 (3.4)

or
W + βχ∇T = 0, k1

∂T

∂n
+ bT = 0

are satisfied.
System (3.1)–(3.3) is supplemented by the initial data

W
∣∣∣
t=0

= W1(x), divW1(x) = 0, T
∣∣∣
t=0

= T1(x). (3.5)

We consider the problem (3.1)–(3.5) in the case of equilibrium in the layer with the rigid walls defined by
formulas (2.4). We introduce the dimensionless variables [W = (U, V,W )]:

ξ = x/(2l), η = y/(2l), ζ = z/(2l), τ = χt/(4l2),

U1 = 2lU/χ, V1 = 2lV /χ, W1 = 2lW/χ, Q1 = 4l2Q/(νχ), T1 = T/(µ(θ1 − θ2)),

l∗ = 2l, θ∗ = µ(θ1 − θ2)

(µ = 1 if θ1 > θ2 and µ = −1 if θ1 < θ2). After substitution of these variables into (3.1)–(3.4), we have the following
system (the subscript 1 is omitted):

Uτ − εµWξ − µε2Tξζ = (1 + βθ0)(−Qξ + ∆U)Pr ,

Vτ − εµWη − µε2Tηζ = (1 + βθ0)(−Qη + ∆V )Pr ,

Wτ − εµWζ + µε2(Tξξ + Tηη) = (1 + βθ0)(−Qζ + ∆W )Pr + GrT/(1 + βθ0), (3.6)

Uξ + Vη +Wζ = 0,

Tτ + εµTζ + µW = (1 + βθ0)∆T.

Here ε = β|θ1 − θ2| is the Boussinesq parameter, Gr = µβ(θ1 − θ2)(2l)3g/χ2 is the Grashof number, and θ0(ζ) =
(θ1 − θ2)ζ + (θ1 + θ2)/2.

Boundary conditions (3.4) on the rigid walls (ζ = −1/2, ζ = 1/2) take the form

U + εTξ = 0, V + εTη = 0, W + εTζ = 0, T = 0. (3.7)

We seek a solution of boundary problem (3.6)–(3.7) in the form of normal waves

(U, V,W,Q, T ) = (U(ζ), V (ζ),W (ζ), Q(ζ), T (ζ)) exp (i(α1ξ + α2η − Cτ)). (3.8)

Here α1 and α2 are dimensionless wavenumbers along the x and y axes, respectively, and C is the complex decre-
ment that determines the variation of perturbations with time. If C = Cr + iCi, the perturbations oscillate at a
frequency Cr; the decay or build-up of the perturbations are determined by the sign of the real part of Ci.

Substituting (3.8) into (3.6), for |ζ| < 1/2, we obtain a spectral problem with respect to the parameter C
for the system of ordinary differential equations:

−iCU − iα1µεW − iα1µε
2T ′ = (1 + βθ0)[U ′′ − (α2

1 + α2
2)U − iα1Q]Pr ; (3.9)

−iCV − iα2µεW − iα2µε
2T ′ = (1 + βθ0)[V ′′ − (α2

1 + α2
2)V − iα2Q]Pr ; (3.10)

−iCW − µεW ′ − [µε2(α2
1 + α2

2) + Gr/(1 + βθ0)]T = (1 + βθ0)[W ′′ − (α2
1 + α2

2)W −Q′]Pr ; (3.11)

iα1U + iα2V +W ′ = 0; (3.12)

−iCT + µεT ′ + µW = (1 + βθ0)[T ′′ − (α2
1 + α2

2)T ] (3.13)

(primes denote differentiation with respect to ζ).
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Boundary conditions (3.7) for |ζ| = 1/2 have the form

U = 0, V = 0, W + εT ′ = 0, T = 0. (3.14)

Squire transformation can be applied to problem (3.9)–(3.14). Multiplying (3.9) by iα1 and (3.10) by iα2

and denoting Z = iα1U + iα2V , we obtain the problem

−iCZ + µεk2W + µε2k2T ′ = (1 + βθ0)(Z ′′ − k2Z + k2Q)Pr ; (3.15)

−iCW − µεW ′ − (µε2k2 + Gr/(1 + βθ0))T = (1 + βθ0)(W ′′ − k2W −Q′)Pr ; (3.16)

Z +W ′ = 0; (3.17)

−iCT + µεT ′ + µW = (1 + βθ0)(T ′′ − k2T ), (3.18)
where k =

√
α2

1 + α2
2 is a modified wavenumber.

For |ζ| = 1/2, we have

Z = 0, W + εT ′ = 0, T = 0. (3.19)

A necessary and sufficient condition for “rough” instability of the equilibrium state (3.4) (i. e., instability to
a first approximation) is that ImC > 0 for at least one eigenvalue.

Remark 4. For C = 0, system (3.15)–(3.18) reduces to one equation of the sixth order in temperature
perturbations:

L2(xLT − ε2T ′) + (k2R/x2)T = 0, T = T ′ = T ′′ = 0, x = 1 + βθ1,2,

where x = 1 + βθ0(ζ) and L = ε2d2/dx2 − k2. However, even in this case, we were unable to integrate the last
equation explicitly and to find critical Rayleigh numbers R in explicit form.

Remark 5. Since Gr = εηPr [η = (2l)3g/(νχ) is a microconvection parameter], for moderate Prandtl
numbers, the boundary-value problem (3.15)–(3.19) approximates the problem of the stability of equilibrium (2.5)
as ε→ 0 (see Remark 2). If Gr→ Gr0 > 0 as ε→ 0, we arrive at the problem of the stability of equilibrium (2.6)
in the Oberbeck–Boussinesq model.

4. Asymptotic Behavior of Long Waves. We consider the asymptotic behavior of amplitude equations
as k → 0.

Because k2 appears everywhere in the system, we set

Z = Z0 + k2Z1 + . . . , W = W0 + k2W1 + . . . ,

Q = Q0 + k2Q1 + . . . , T = T0 + k2T1 + . . . , C = C0 + k2C1 + . . . .

In a zeroth approximation, substitution of these equations into (3.15)–(3.18) yields the system

−iC0Z0 = (1 + βθ0)Z ′′0 Pr ,

−iC0W0 − µεW ′0 −GrT0/(1 + βθ0) = (1 + βθ0)(W ′′0 −Q′0)Pr ,
(4.1)

Z0 +W ′0 = 0,

−iC0T0 + µεT ′0 + µW0 = (1 + βθ0)T ′′0 .

The boundary conditions for Zi, Wi, Qi, and Ti (i = 0, 1) coincide with (3.19).
We write the equation for Z0 in the form Z ′′0 = −iC0Z0/((1 + βθ0)Pr ). Multiplying it by the complex

conjugate quantity Z∗0 and integrating it over the interval [−1/2; 1/2], we have

iC0

Pr

1/2∫
−1/2

|Z0|2 dζ
1 + βθ0

=

1/2∫
−1/2

|Z ′0|2 dζ.

It follows that the quantity C0 is imaginary (C0 = iC0i for C0i < 0). Hence, long-wave perturbations attenuate
monotonically irrespective of the sign of the difference θ1 − θ2. The form of C0i can easily be specified. Indeed, the
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substitution x = 1 + βθ0(ζ) = 1 + β(θ1 − θ2)ζ + β(θ1 + θ2)/2 leads to the equation xZ ′′0 + µ0Z0 = 0, where µ0 =
iC0/(Pr ε2); as was proved above, µ0 > 0. On the other hand, the last equation has a general solution

Z0 =
√
x(h1J1(2

√
µ0x) + h2Y1(2

√
µ0x)), h1, h2 = const,

where J1 and Y1 are Bessel functions of the first and second kinds. Because Z0(x1,2) = 0 (x1,2 = 1 + βθ1,2 > 0), it
follows that τ = 2

√
µ0x1 is a root of the transcendental equation

J1(τ)Y1(λ0τ)− J1(λ0τ)Y1(τ) = 0, λ0 =
√
x2/x1.

The last equation has a denumerable number of real roots τn [7]. Hence,

C0n = −(Pr ε2τ2
n/(4x1))i ≡ iC0i. (4.2)

We consider the system of the first approximation in k2. Instead of (4.1), we have the system

−i(C0Z1 + C1Z0) + εW0 + µε2T ′0 = (1 + βθ0)(Z ′′1 − Z0 +Q0)Pr ,

− i(C0W1 + C1W0)− µεW ′1 −GrT1/(1 + βθ0)− µε2T0 = (1 + βθ0)(W ′′1 −W0 −Q′1)Pr , (4.3)

Z1 +W ′1 = 0,

−i(C1T0 + C0T1) + µεT ′1 + µW1 = (1 + βθ0)(T ′′1 − T0).

From (4.3) for Z1, we obtain the boundary-value problem

Z ′′1 + iC0Z1/(Pr (1 + βθ0)) = (−iC1Z0 + µεW0 + µε2T ′0)/(Pr (1 + βθ0)) + Z0 −Q0,

Z1(±1/2) = 0.

A necessary and sufficient condition for unique solvability of this problem is that the right side of the last equation
be orthogonal to the solution of the homogeneous conjugate equation, i.e., Z∗0 . From this, we have

iC1 =

[ 1/2∫
−1/2

(µεW0 + µε2T ′0
(1 + βθ0)Pr

−Q0 + Z0

)
Z∗0 dζ

]( 1/2∫
−1/2

|Z0|2

1 + βθ0
dζ

)−1

. (4.4)

It can be shown that iC1 is a real number.
5. Numerical Solution of the Eigenvalue Problem. To find a numerical solution of the problem using

the orthogonalization method [8], we reduce system (3.15)–(3.18) to the form and y′ = Ay, where y(ξ) is the vector
of the unknown quantities and A(ξ) is a coefficient matrix (0 6 ξ 6 1). We substitute

ξ = ζ + 1/2, y1 = Z, y2 = Z ′, y3 = Z ′′, y4 = W, y5 = T, y6 = T ′. (5.1)

Excluding Q from (3.15) and (3.16), we obtain the following system of equations:

y′1 = y2, y′2 = y3, y′4 = −y1, y′5 = y6,

y′3 =
εCi

(1 + βθ0)2Pr
y1 +

(
2k2 − Ci

(1 + βθ0)Pr

)
y2

+
(
k4 − k2Ci

(1 + βθ0)Pr
+

εk2(ε− µ)
Pr (1 + βθ0)2

)
y4 −

µε2k2Ci+ k2Gr
(1 + βθ0)2Pr

y5 +
ε3k2(1− µ)

Pr (1 + βθ0)2
y6,

y′6 =
µ

1 + βθ0
y4 +

(
k2 − Ci

1 + βθ0

)
y5 +

εµ

1 + βθ0
y6.

Here θ0 = θ2 + (θ1 − θ2)ξ. By virtue of substitution (5.1), boundary conditions (3.19) take the form y1 = 0,
y4 + εy6 = 0, and y5 = 0 for ξ = 0 and ξ = 1.

Thus, we solve the system y′ = A(ξ)y with the boundary conditions By(0) = 0 and Dy(1) = 0 for ξ = 0
and 1, respectively. The 6× 6 matrix A has the following elements:

a11 = a13 = a14 = a15 = a16 = 0, a12 = 1,

a21 = a22 = a24 = a25 = a26 = 0, a23 = 1,
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a31 =
εCi

(1 + βθ0)2Pr
, a32 = 2k2 − Ci

(1 + βθ0)Pr
, a33 = 0,

a34 = k4 − k2Ci

(1 + βθ0)Pr
+

εk2(ε− µ)
Pr (1 + βθ0)2

, a35 = −µε
2k2Ci+ k2Gr

(1 + βθ0)2Pr
, a36 =

ε3k2(1− µ)
Pr (1 + βθ0)2

,

a41 = −1, a42 = a43 = a44 = a45 = a46 = 0,

a51 = a52 = a53 = a54 = a55 = 0, a56 = 1,

a61 = a62 = a63 = 0, a64 =
µ

1 + βθ0
, a65 = k2 − Ci

1 + βθ0
, a66 =

εµ

1 + βθ0
.

The 3× 6 matrices B and D coincide and their elements have the values

b11 = d11 = b24 = d24 = b35 = d35 = 1, b26 = d26 = ε.

The other elements of both matrices are equal to zero.
We seek a solution in the form

y =
3∑
j=1

pjy
j , (5.2)

where the coefficients pj are determined from the system Dy(1) = 0, and y1, y2, and y3 are linearly independent
vectors such that

y1(0) = (0, 0, 0,−ε, 0, 1), y2(0) = (0, 1, 0, 0, 0, 0), y3(0) = (0, 0, 1, 0, 0, 0).

To determine the eigenvalue C, it is necessary to choose two initial approximations C0 and C1 from condi-
tions (4.2) and (4.4). In the leftmost region, we integrate the equations for y1, y2, and y3 with a specified step
size in ξ. We orthogonalize the vectors obtained in the right region. In the next region, we integrate only those
solutions for which the initial data are vectors obtained by orthogonalization. The solutions on the right end of
the second region are orthogonalized until the point ξ = 1 is reached. For integration, we use the forth-order
Runge–Kutta–Mercenne method with an automatic choice of an integration step. Since for each of the vectors yj

there may be an individual integration step, we retain the smallest of the three values obtained by automatic choice
of the step. Reaching the right side of the integration region (point ξ = 1), we have a system of three equations
Dy(1) = 0 for three unknowns pj , where y has the form of (5.2). The determinant of the system composed of the
coefficients yji (j = 1, 2, 3, i = 1, . . . , 6) is written as a characteristic polynomial F (C). A necessary and sufficient
conditions for the existence of a nontrivial solution of the system Dy(1) = 0 is that the determinant of the system
[in this case, F (C)] be equal to zero. Thus, the problem reduces to solution of the nonlinear equation F (C) = 0.
The equation is solved by the secant method, using C0 and C1 as the initial approximations. The root of the
equation F (C) = 0 is the desired eigenvalue for a specified wavenumber k. We consider long-wave perturbations,
i.e., k → 0. Moving along k from the value k = 10−5, we find the dependence C(k). From the sign of the imaginary
components C obtained in each step over k, we determine the stability intervals.

We studied the stability of a layer of melted silicon with rigid walls for the following parameters:
ν = 2.65 · 10−3 cm2/sec, χ = 0.49 cm2/sec, β = 0.75 · 10−5◦C−1, and Pr = 5.41 · 10−3. Calculations were
performed for absolute values of the temperature difference on the walls: |θ1 − θ2| = 10 and 1000◦C. This means
variation in the dimensionless parameter ε = β|θ1 − θ2|. The linear dimension of the layer was chosen such that
the inequality (2l)3g/(νχ) < 1, which is a criterion for the validity of the microconvection model (see [1, 9]), was
satisfied. The smallness of the parameter η = (2l)3g/(νχ) can be reached by increasing the length scale or the
acceleration of gravity g [for example, under zero gravity with g ≈ (10−2–10−3)g0, where g0 = 981 cm/sec2 is the
acceleration of gravity near the earth]. In the calculations, g ≈ 10−3g0, i. e., 2l < 0.11 cm. For the indicated values
of l, β, χ, and ν, we determined the dependence of the parameters Ci = ImC and Cr = ReC on the wavenumber k.

Figure 1 shows curves of Ci(k) for ε = 7.5 · 10−5 (|θ1 − θ2| = 10◦C) and Rayleigh number R = 4.21 · 10−4.
The dashed curve corresponds to heating from above (θ1 > θ2) and the solid curve to heating from below (θ1 < θ2).
(Hereinafter, the curves corresponding to the case where the fluid is heated from above are denoted by C−i and
those corresponding to heating from below are denoted by C+

i .)
Figure 2 shows a curve of Cr(k) for the same values of ε and R as in Fig. 1. Since the values of C+

r (k)
and C−r (k) differ from each other by not more than 10−6, the corresponding curves in Fig. 2 coincide.
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Fig. 1 Fig. 2

Fig. 3 Fig. 4

Figure 3 shows curves of C+
i (k) and C−i (k) (solid and dashed curves, respectively) for ε = 7.5 · 10−3

(|θ1 − θ2| = 1000◦C) and R = 4.21 · 10−2. Figure 4 shows a curve of Cr(k) for the same values of ε and R as in
Fig. 3.

We note that with increase in ε (i.e., the temperature difference on the walls), the curves of Ci(k) increases
more rapidly from the value of C0i. All curves of C−i (k) increase more slowly in comparison with the corresponding
curves of C+

i (k). With increase in ε, the modulus of the difference |C+
i − C

−
i | increases. For any k, all values of

Ci < 0, i.e., the equilibrium state is stable.
All curves of Cr(k) grow only slightly with increase in k (10−7 6 k 6 1). For all values of ε, the following

conditions are satisfied: 1) Cr > 0 for all k; moreover, the values of Cr are close to zero (Cr ≈ 10−12) up to k = 0.05;
2) Cr practically does not change at k > 5: |Cr(5)−Cr(20)| 6 10−12; 3) all values of C−r lie below the corresponding
values of C+

r : |C+
r (k)− C−r (k)| < 10−6.

The stability of equilibrium (2.4) for melted silicon is not unexpected because Pr = 5.41·10−3 (see Remark 5).
If we set ε = 0 in (3.15)–(3.19), we obtain the problem of the stability of equilibrium (2.5) for a heat-conducting
viscous fluid:

−iCZ = (Z ′′ − k2Z + k2Q)Pr , −iCW = (W ′′ − k2W −Q′)Pr , −iCT + µW = T ′′ − k2T,

Z +W ′ = 0, −1/2 < ξ < 1/2, Z = W = T = 0, ξ = ±1/2.

This spectral problem is easy to solve: we first determine Z and W and then find the temperature pertur-
bations. Although explicit expressions are not given here, we note that the following integral identity holds:

(
k2 − iC

Pr

) 1/2∫
−1/2

(k2|W |2 + |Z|2) dξ +

1/2∫
−1/2

(k2|W ′|2 + |Z ′|2) dξ = 0.

Hence it follows that −iC < 0 is a real number. In other words, the equilibrium state (2.5), which is limiting for (2.4)
as β → 0, is always stable. It can be shown that the complex decrement is a solution of one of the equations

x tan x = −k tanh (k/2), (1/x) tan x = (1/k) tanh (k/2),

where x = (iC/Pr − k2)1/2/2. The last equations have a denumerable number of real solutions.
As is known, the linearized problem of the convective unstability of an immovable fluid in the Oberbeck–

Boussinesq model is a self-conjugate problem (in the case of heating from below) [4]; therefore, the real part of
the eigenvalue Cr is equal to zero. The perturbations attenuate or intensify monotonically, and the resulting
motion is steady. The equilibrium state (2.6) of a horizontal fluid layer with thickness of 2l and the temperature
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Fig. 5

gradient directed below [(θ2 − θ1)/(2l) > 0] becomes unstable, if R = gβ(θ2 − θ1)(2l)3/(νχ) > R∗ = 1708, and the
corresponding dimensionless value of the wavenumber is k∗ = 3.12.

It is of interest (see Remarks 3 and 5) to compare the classical result with results of numerical solution
of the spectral problem (3.15)–(3.19) when the Rayleigh number R = εη is finite for ε � 1. Calculations were
performed for melted silicon for the same values of physical parameters and for θ2 − θ1 = 1000◦C. With increase
in η, the curve of Ci(k) approaches the axis Ci = 0 and intersects this axis for the first time at k = k1 = 2.84 < k∗,
when η1 = 225, 193.33. In this case, R1 = εη1 = 1688.95 < R∗ and the layer thickness is 2l1 = 6.68 cm for
g = 10−3g0. The solid curve in Fig. 5 shows a curve of Ci(k) for the microconvection model, and the dashed curve
shows the same curve for the Oberbeck–Boussinesq model. Thus, in the microconvection model, instability of the
equilibrium state is observed for smaller wavenumbers. Obviously, this is due to the larger mobility (compressibility)
of the fluid in this case. The values of Cr for R > 103 for all k are close to 10−12, and the spectral problem (3.15)–
(3.19) becomes more “self-conjugate.” With decrease in the Boussinesq parameter ε, the critical values of the
Rayleigh number and the wavenumber increase. Thus, for ε = 0.75 · 10−4 and θ2 − θ1 = 10◦C we have k1 = 2.99
and R1 = 1694.54, which agrees with Remark 5.

The work was supported by the Foundation of Integration Programs of the Siberian Division of the Russian
Academy of Sciences (Grant No. 5).
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